
6 CROSSTALK The Journal of Defense Software Engineering January 2005

Open Source Software

Open Source Software: Opportunities and Challenges

Much more than a buzzword, open source software is becoming an increasingly important part of the information technolo-
gy environment. Many program managers, project managers, and developers in the Department of Defense and elsewhere are
already familiar with open source; others may wonder how best to use open source in a project environment. In considering the
opportunities presented by open source software, it is helpful to understand its origins as well as the challenges you may face
in implementing it.

David Tuma
Software Process Dashboard Initiative

Whether you realize it or not, you rely
on open source software every day.

Open source software provides the under-
pinnings for the Internet, directs much of
the world’s e-mail traffic, and powers
more than two-thirds of the world’s Web
sites [1].

The open source paradigm is based on
the idea that software reuse need not stop
at organizational boundaries. By sharing
source code freely under a license that
generously permits copying, modification,
and redistribution, open source projects
allow collaborative software development
that benefits a larger community.

Although open source software has
been in existence for decades, the arrival
of the Internet has led to a veritable
explosion in open source activity. The
Internet has made it possible for develop-
ers around the world to discover each
other, collaborate in real time, and share
the works they create with others.

Organizations, businesses, and govern-
ments around the world are opening up to
the possibilities provided by open source
software. Although open source software
has been in use for some time in the
Department of Defense (DoD), a policy
released in May of 2003 [2] officially put
open source software on a level playing
field with proprietary software.

If you have not explored open source
software firsthand, you might be surprised
by its diversity. Although media coverage
commonly focuses on the Linux operating
system and on server-based applications
like Apache and MySQL, these applica-
tions are only the tip of the iceberg.
System administration tools like Snort (an
intrusion-detection tool), Nessus (a vul-
nerability scanner), and NetCat (a network
debugging and mapping tool) help to
manage computer networks. A wide vari-
ety of tools ranging from the Gnu’s Not
Unix (GNU) C Compiler to Perl (a popu-
lar programming language) to Eclipse (a
Java integrated data environment devel-
oped by IBM) target software develop-

ment. An extensive array of reusable
libraries and frameworks can save your
software project time and money.
Applications like Mozilla (a Web browser)
and OpenOffice (an office productivity
suite) address common end-user needs.
And of course, the list goes on – one pop-
ular open source Web site alone lists more
than 11,000 stable/mature open source
projects [3].

Strengths of Open Source
Many organizations are initially attracted
to open source products because they can
generally be acquired for free.
Momentarily deferring the debate about
total cost of ownership until later in this
article, removal of the initial procurement
barrier can at times be a significant
enabling factor for software use. For
example, budget constraints have encour-
aged academia to adopt and support open
source software for decades. With the
increased public awareness of open
source, public and private middle and sec-
ondary schools are beginning to investi-
gate open source options, as well [4]. And
small businesses may find open source
software helpful in leveling the playing field.

Government organizations and con-
tractors often discover different reasons
to appreciate zero-cost licenses for open
source software. For example, in 1999 the
Census Bureau needed to create a Web site
but had no official information technolo-
gy budget to make it happen; staffers were
able to build the Web site using open
source applications and existing hardware,
and the Web site is still in use today [5]. In
addition, open source approaches can
lower the monetary risk of experimenting
with new technologies, effectively speed-
ing the pace of technology adoption and
supporting the collaborative development
of new standards [1]. Moreover, the sim-
plified licensing model of open source
software can facilitate inter-agency sharing
and reuse of developed solutions [6].

In fact, reuse is a central tenet of the

open source development paradigm.
Open source software licenses (as defined
by the Open Source Foundation [7])
explicitly target software reuse by permit-
ting source code to be copied, modified,
and distributed. When organizations and
individuals share a common need, they
can share and reuse entire open source
products rather than independently devel-
oping redundant code. Common exam-
ples of this style of reuse include not only
off-the-shelf open source products like
the Apache Web server, but also applica-
tion frameworks like Struts, and reusable
libraries for performing tasks such as pars-
ing eXtensible Markup Language or con-
suming Web services. Communities orga-
nized around this type of open-source
reuse foster rapid innovation and
progress, as many contributors can simul-
taneously develop improvements that
benefit all users of the product.

The true strength of open source
reusability, however, emerges when an
organization or an individual has a unique
need. An organization or individual with a
new or unmet need is free to modify an
open source product1 to meet that need,
potentially reusing thousands of lines of
code. The benefits of reuse in such a sce-
nario are well understood, saving count-
less hours of development, testing, and
maintenance. Contributing such an
enhancement back to the open source
community can benefit other organiza-
tions with similar needs [8].

Open source software promotes reuse
in another, unexpected way through code
transparency. Inadequate documentation
has long been identified as a significant
barrier to software reuse; in addition, sub-
tle misunderstandings between developers
on either side of a code boundary can lead
to insidious errors. In the absence of flaw-
less code and impeccable documentation,
the freedom to examine source code can
mean the difference between a useful,
reusable library and a baffling black box.

When code in an open source library

 



Open Source Software: Opportunities and Challenges

January 2005 www.stsc.hill.af.mil 7

behaves unexpectedly, a developer can
peer into it to understand its operation
and true intent, and determine whether
the defect lies in the library or in their
mental model of it. If the defect is in the
library, the developer can either notify the
original author or fix it himself or herself.
Otherwise, the developer can gain a better
understanding of the library and correct
his or her code to use it properly. In either
case, transparency across the code bound-
ary helps to improve the quality of the
overall system.

In the broader pursuit of software
quality, many open source projects suc-
ceed by leveraging code review practices
on a massive scale. Studies have demon-
strated that code reviews (analyzing source
code for problems) can remove defects
much more effectively than testing (run-
ning an application and watching for
incorrect behavior). In a closed source
environment, only internal developers can
perform code reviews, while the larger
user community is constrained to black-box
testing. Open source projects remove this
limitation, freeing any end user to partici-
pate in the code review process.

While there is a practical limit to the
number of software developers that can
work together on a single team (because
communication needs increase exponen-
tially with the number of developers),
there is almost no limit to the number of
people who can simultaneously review
code and test an application [9].
Accordingly, successful open source pro-
jects like Linux harness the skills of their
large user base to perform massively par-
allel code reviews. Even brute-force test-
ing methods can prove effective in
improving product quality when thou-
sands of individuals participate, each test-
ing a product from his or her own unique
perspective. When the conditions are
right, open source projects can successful-
ly employ these techniques to develop
very high-quality products [10].

Security of Open Source
Software
Open source proponents cite the collabo-
rative review process as a major strength
of the open source paradigm, ideally suit-
ed for producing highly reliable, secure
code. Nevertheless, the security of open
source software (and its comparison to the
security of proprietary software) is a hotly
debated topic.

For example, open source critics have
recently questioned the use of Linux for
defense systems. In a recent press release,
Green Hills Software, Inc.’s Chief

Executive Officer Dan O’Dowd stated,
“The open source process violates every
principle of security. It welcomes every-
one to contribute to Linux. Now that for-
eign intelligence agencies and terrorists
know that Linux is going to control our
most advanced defense systems, they can
use fake identities to contribute subver-
sive software that will soon be incorpo-
rated into our most advanced defense sys-
tems” [11].

Other experts quickly responded to
O’Dowd’s claims, labeling them fear, uncer-
tainty, and doubt. Citing Easter eggs, back-
doors, spyware, and malware, they pointed
out that proprietary software could just as
easily contain illegitimate code. Citing the
rigorous public review process used to
approve Linux code, they argued that a for-
eign intelligence agency could more easily infil-
trate a commercial development project

than slip malevolent code under the noses
of hundreds or thousands of watching
reviewers. If one is truly worried about
such malicious code, they argued, open
source development is a better approach
than closed source development since it
permits anyone to perform his or her own
independent review [12, 13].

Experts on both sides of the open
source security debate contribute many
compelling arguments. The bottom line,
however, is that open source software is
not automatically more or less secure than
proprietary software [14]. Both develop-
ment approaches have their strengths and
weaknesses, but neither automatically pro-
duces more secure code than the other.
Unfortunately, impassioned people on
both sides of the debate regularly make
broad, unconditional assertions about the
relative security of open source and pro-
prietary software. Although such state-
ments certainly keep the debate interesting
(and make for colorful news items), objec-
tive analyses are more useful. An astute

observer should be skeptical of sweeping
generalities and dig deeper to find impar-
tial expert analysis.

Using Open Source Software
Many people may have preconceived ideas
about potential uses of open source soft-
ware. With the variety of products avail-
able, however, there are many ways pro-
jects might consider using open source
(including but not limited to the follow-
ing):
• Deploy onto off-the-shelf open source

server software (such as Linux,
Apache, or MySQL).

• Reuse open source architectural frame-
works (such as Struts, Spring, or
Zope).

• Make use of open source development
tools (such as Ant, Eclipse, or CVS
[Concurrent Versions System]).

• Leverage reusable libraries (such as
Xalan, OpenSSL, or GTK+).
Like the DoD, many organizations

currently have policies that permit using
open source software when it meets
applicable requirements and provides the
best value for the money. Thus, project
managers considering using open source
software must be prepared to analyze all
the options available – both proprietary
and open source – and determine which
product provides the best value within the
requirements for the project at hand.
Project managers can immediately
encounter several challenges relating to
open source products.

For example, project managers may
have difficulty discovering what open
source products are available. Unlike pro-
prietary alternatives, open source products
rarely have budgets for advertising and
marketing. And while mainstream media
often includes news items on flagship open
source products like Linux and Apache,
you are unlikely to find information on
frameworks, libraries, tools, or less com-
mon applications.

Fortunately, many Internet resources
are available. Two of the largest Web sites
are <freshmeat.net> [15] and <source
forge.net> [3]; both list tens of thousands
of open source software items in a cate-
gorized and searchable format. Keep in
mind that open source (like technology in
general) can progress at a remarkable rate,
and new open source products and frame-
works can seemingly appear overnight.
Similarly, an open source project that
might have had too many rough edges six
months ago may now exceed your needs
today. To keep abreast of these changes,
software developers may find
<slashdot.org> [16] to be a useful source

“An organization or
individual with a new
or unmet need is free

to modify an open
source product to meet
that need, potentially
reusing thousands of

lines of code.”



Open Source Software

8 CROSSTALK The Journal of Defense Software Engineering January 2005

of product announcements.
With a list of potential open source

and proprietary options ready, the daunt-
ing challenge of determining best value
begins (see Table 1). This project manage-
ment task has never been simple, but
open source introduces many additional
challenges.

For example, when considering only
proprietary options, managers might glean
information from the market price of a
product. It might be a safe working
assumption that a $50,000 product has
more features than a $500 product.
Where, then, does an open source prod-
uct fit in the list? In a similar vein, man-
agers can often look at market share statis-
tics for proprietary products to see which
ones are most popular. Unfortunately, this
is often impossible for all but a handful of
open source products. Although the
Hyper Text Transfer Protocol makes it
possible to estimate the number of
Apache Web servers in use around the
world, there is almost no way to deter-
mine how many people are using Linux,
OpenOffice, or many of the tens of thou-
sands of other open source applications
in existence. These challenges make it
more difficult to build a short list of prod-
ucts to choose from.

As a result, finding the best value comes
down to a lot of research, legwork, and
analysis. Find people within your organi-
zation and elsewhere who are using the
products, and draw upon their experiences
for pragmatic advice. Look for reviews in
online publications. And above all, be
wary of sweeping claims that open source
software is better/worse than proprietary software
in category XYZ. Although it is tempting to
listen to such claims (because they would
certainly simplify your decision-making

process), they rarely withstand careful
scrutiny. In truth, comparisons must be
made on a case-by-case basis, taking into
consideration not only the products in
question but also the unique requirements
of your project. Here are some items to
include on your comparison checklist (see
[17] for a more thorough checklist):
• Requirements. This is, of course, one

of the most important characteristics
to consider: Does the software provide
the functionality your project needs? If
an open source product is missing a
small function you need, is it possible
and cost effective to add the feature
yourself (keeping life-cycle costs in
mind)? Does it meet your project’s
requirements for performance, quality,
reliability, scalability, and security?

• Licensing Restrictions.Open source
software is distributed under various
licenses with differing terms. If some
of these are incompatible with your
project’s target environment (see dis-
cussion below), they should be elimi-
nated early in the selection process.

• Support. What quality of support is
available for the various options on
your list, and how much does that sup-
port cost? Support for open source
products may be available from the
original developers or from third par-
ties. If third-party support is not avail-
able, you can gauge the level of support
from the open source community by
scanning related help forums, bug
trackers, and mailing list archives.
Throughout the past months, have user
cries for help gone unanswered, or have
they been addressed quickly? Larger
open source projects – especially the
flagship open source products like Linux
and Apache – often have excellent sup-
port [18, 19, 20]. Support for smaller
projects may be lacking – especially if
the project is no longer under active
development. In such cases, you will
need to estimate how much it would
cost to support the application yourself.

• Documentation. Is the product ade-
quately documented? Does the docu-
mentation appear up-to-date? Are third-
party books on the product available?

• Maintenance Costs. Will the de-
ployed product be easy to maintain?
For example, will it require monitoring
and patching, and are tools available to
help with those tasks? 

• Skills. Do members of your team have
expertise with the products in question?
If not, is training available (either online
or from a third party)? If you plan to
outsource or subcontract project work
or maintenance, are experienced con-

tractors/integrators available?
• Warranties. Open source software

typically comes with no warranties,
although third-party warranties may be
available. How do these compare with
the warranties for the proprietary soft-
ware choices on your list?

• Vendor Lock-In. Is the product stan-
dards-based, or does it lock you into a
particular proprietary solution? Al-
though most open source products are
vendor-neutral, not all are. If technolo-
gy neutrality is important to your pro-
ject, examine your options carefully.
Ultimately, many of these considera-

tions roll up into the larger concept of
total cost of ownership (TCO). TCO has
received a lot of media attention lately,
and will continue to be a source of debate;
like all of the characteristics above, how-
ever, TCO must be evaluated on a case-
by-case basis. Some projects will see a
lower TCO from proprietary solutions,
while some will see a lower TCO from
open source products. And with certainty,
the types of projects that benefit from
each will change over time, as both pro-
prietary and open source products move
forward.

If your research and analysis lead you
to select an open source product for your
project, it is, of course, imperative that
you understand and respect the license
terms of that open source software2.
Because open source software is generally
available at no cost, people often mistak-
enly assume that the code is in the public
domain and can be used without restric-
tions. On the contrary, open source soft-
ware is generally distributed under one of
the licenses approved by the Open Source
Initiative [7].

By definition, open source licenses
universally grant broad permission to
copy, modify, and distribute source code
and compiled binaries, as long as the
terms of the license agreement are
respected. In many cases, these terms are
very simple to comply with; for example,
they may require a specific copyright
notice and disclaimer to be included in the
end-user documentation of a product that
redistributes an open source library. Of
course, the terms vary from license to
license, and dozens of open source licens-
es are in active use today, so it is important
to carefully read, understand, and comply
with the licenses of any open source prod-
ucts you use. Fortunately, this task is not as
difficult as it sounds, since a small number
of licenses (listed in Table 2) cover as
much as 90 percent of the open source
software currently available.

If you modify an open source product

Table 1: Checklist for Comparing Software
Options

Checklist for Comparing Software Options

Cost-Related Factors

o Software Costs

(purchase, upgrades, licensing)

o Hardware Costs (purchase, upgrades)

o Staffing Costs (internal and contract staff)

o Internal and External Support Costs

(installation, maintenance, troubleshooting)

o Indirect Costs (downtime, training)

Qualitative Factors

o Customizability/Flexibility

o Availability/Reliability

o Interoperability

o Scalability

o Performance

o Security

o Manageability/Supportability

o Expected Lifetime

Source: "A Business Case Study of Open Source Software" [17] 

Commonly Used Open Source Licenses

• GNU General Public License
• GNU Lesser General Public License
• Berkeley Software Distribution License
• Artistic License
• Apache Software License
• Massachusetts Institute of Technology License
• Mozilla Public License



Open Source Software: Opportunities and Challenges

January 2005 www.stsc.hill.af.mil 9

or compile it into a larger program, addi-
tional licensing terms may apply. For
example, some licenses will require your
modifications to be released back to the
open source community. Ensure that you
read the license carefully and understand
its requirements. In particular, most orga-
nizations will want to avoid compiling and
linking code distributed under Gnu’s Not
Unix (GNU) General Public License into
a larger project [21].

When using, modifying, or enhancing
open source software, it is also important
to understand any applicable restrictions
that stem from organizational policy, con-
tractual requirements, and the like. For
example, if your organization forbids any
external release of code, and a particular
open source product requires distributed
code modifications to be released as open
source, then you may not be able to mod-
ify that library and still meet all your legal
obligations2. From a project management
standpoint, it is best to be aware of such
constraints before heading down a dead-
end path.

Participating in the Open
Source Community
As awareness of open source software
grows, and as open source usage becomes
a more common part of everyday soft-
ware development, more and more indi-
viduals and organizations wonder how
they can get involved with the open source
community.

Some organizations have successfully
embraced the open source development
model for their managed projects, accept-
ing code contributions from external
developers. However, since external devel-
opers may not be accountable to the inter-
nal project goals, this approach introduces
risks that most projects are not able to
accept. Fortunately, there are still many
other creative ways to work with the open
source community.

Perhaps the simplest way to participate
in the open source community is to pro-
vide feedback and bug fixes to open
source projects. If your project uses an
open source product (whether it be an
operating system, an application, a frame-
work, a reusable library, or some other
product), take the time to thank the devel-
opers who created it. In many cases, this
thanks is the only payment they receive for
their efforts. If you discover and/or fix a
bug in the product, you can benefit the
entire community by sharing your discov-
ery or patch with the product developers.

Another way to participate in the open
source community is to contribute

enhancements to an open source product.
If you discover that a particular open
source product meets most (but not all) of
your needs, and decide (through due dili-
gence) that the best course of action for
your project is to extend and enhance the
open source product, consider contribut-
ing these enhancements back to the com-
munity when your project is done. Many
commercial and government projects par-
ticipate in open source in this way.

Some organizations have gone even
further, contributing completed projects
in their entirety to the open source com-
munity. In addition to the obvious benefits
of reuse, organizations have discovered
other unexpected benefits as well – for
example, reduced life-cycle costs as open
source developers begin fixing bugs and
adding features [22]. Both government
and corporate supporters of open source
are increasingly using this approach.

Summary
Open source will continue to be an impor-
tant part of the software landscape for
years to come. Although misconceptions
and misinformation often confuse the
decision-making process, careful analysis
can indicate where using open source is
appropriate. Understanding the issues and
opportunities inherent in open source is
the first step in using it effectively to deliv-
er maximum value for your project, your
organization, and your clients.u

References
1. Fordahl, Matthew. “Open-Source

Software a Big Tech Player.” AP
Online 16 July 2004 <www.biz
report.com/news/7684>.

2. Stenbit, John P. “Open Source
Software (OSS) in the Department of
Defense (DoD).” Washington, D.C.:
Defense Information Systems Agency,
28 May 2003 <http://iase.disa.mil/
oss-in-dodmemo.pdf>.

3. Open Source Technology Group.
SourceForge.net 12 Sept. 2004
<http://sourceforge.net>.

4. Surran, Michael. “Making the Switch
to Open Source Software.” T.H.E.
Journal 31.2 (Sept. 2003): 36+ <www.
thejournal.com/magazine/vault/
a4499.cfm>.

5. Zieger, Anne. “Open-Minded: Gov-
ernment Agencies Are Overcoming
Obstacles to Open Source.” Govern-
ment Enterprise 2 June 2002 <www.
governmententerprise.com/show
Article.jhtml?articleID=17501499>.

6. Gallagher, Peter. Public InfoStructure –
Inevitable Evolution: Unlocking
Innovation for the Business of

Government. Proc. of the Third
Annual Open Source in Government
Conference, George Washington
University, Washington, D.C., 16 Mar.
2004 <www.egovos.org/Conferences/
March_2004_Presentations>.

7. Perens, Bruce. The Open Source
Initiative. Vers. 1.9. Open Source, 19
Oct. 2001 <www.opensource.org>.

8. Pavlicek, Russell. “Open Source
Perspective: Open Source Origins.”
Processor 25.34 (22 Aug. 2003): 6
<www.processor.com/Editorial/
article.asp?article=articles/p2534/06
p34/06p34.asp>.

9. Raymond, Eric S. “The Cathedral and
the Bazaar.” Free-Soft.Org, 22 Nov.
1998 <www.free-soft.org/literature/
pape r s/ e s r/ c a th ed r a l - b a z a a r/
cathedral-bazaar.html>.

10. United Nations. E-Commerce and
Development Report 2003. United
Nations Conference on Trade and
Development, New York and Geneva,
2003: Chap: 4 “Free and Open Source
Software: Implications for ICT Policy
and Development.” <www.unctad.
org/en/docs/ecdr2003ch4_en.pdf>.

11. Green Hills Software. “Using Linux
Software in Defense Systems Violates
Every Principle of Security Says Green
Hills Software’s CEO and Founder.”
Santa Barbara, CA: Green Hills Soft-
ware, 8 Apr. 2004 <www.ghs.com/
news/20040408_AFEI.html>.

12. Groklaw. “CEO’s of LynuxWorks and
FSMLabs Reply to Green Hills’ FUD.”
Groklaw. Ed. Pamela Jones. 11 Apr.
2004 <www.groklaw.net/article.php?
story=20040411073918151>.

13. Singh, Inder. “LynuxWorks CEO, Dr.
Inder Singh, Challenges Misrepresen-
tative Claims Regarding Security in the
Military.” San Jose, CA: LynuxWorks,
2004 <www.lynuxworks.com/corporate
/press/2004/linux-secure-military.
php>.

14. Wheeler, David A. Open Source
Software (OSS) and Security. Proc. of
the Third Annual Open Source in
Government Conference. George
Washington University, Washington,
D.C., 15-17 Mar. 2004 <www.egovos.
org/Conferences/March_2004_

Cost-Related Factors

o Software Costs

(purchase, upgrades, licensing)

o Hardware Costs (purchase, upgrades)

o Staffing Costs (internal and contract staff)

o Internal and External Support Costs

(installation, maintenance, troubleshooting)

o Indirect Costs (downtime, training)

Qualitative Factors

o Customizability/Flexibility

o Availability/Reliability

o Interoperability

o Scalability

o Performance

o Security

o Manageability/Supportability

o Expected Lifetime

Source: "A Business Case Study of Open Source Software" [17] 

Commonly Used Open Source Licenses

• GNU General Public License
• GNU Lesser General Public License
• Berkeley Software Distribution License
• Artistic License
• Apache Software License
• Massachusetts Institute of Technology License
• Mozilla Public License

Table 2: Commonly Used Open Source Licenses



10 CROSSTALK The Journal of Defense Software Engineering January 2005

Open Source Software

Presentations>.
15. Open Source Technology Group.

Freshmeat.net 12 Sept. 2004 <http://
freshmeat.net/about>.

16. Open Source Technology Group.
Slashdot.org. Eds. Rob Malda, Jeff
Bates, et al. 12 Sept. 2004 <http://
slashdot.org/about.shtml>.

17. Kenwood, Carolyn A. “A Business
Case Study of Open Source Software.”
Bedford, MA: The MITRE Corpo-
ration, July 2001 <www.mitre.org/
work/tech_papers/tech_papers_01/
kenwood_software/index.html>.

18. King, Julia. “A Sunny Forecast For
Open Source.” Computerworld 26
Apr. 2004 <www.computerworld.
com/industrytopics/travel/story/0,10
801,92583,00.html>.

19. Rapoza, Jim. “Can Open Source
Provide Adequate Support?” eWeek
19 Apr. 2004 <www.eweek.com/
article2/0,1759,1569380,00.asp>.

20. Dickerson, Chad. “CTO Connection:
Open Source for a Song.” InfoWorld
15 Aug. 2003 <www.info world.com/
article/03/08/15/32OPconnection_

1.html>.
21. Wacha, Jason B. “Open Source, Free

Software, and the General Public
License.” Computer and Internet Law
20.3 (1 Mar. 2003): 20+.

22. Boos, Paul M. Using and Contributing
to the Open Source Community While
Supporting the Government. Proc. of
the Third Annual Open Source in
Government Conference. George
Washington University, Washington,
D.C., 15-17 Mar. 2004 <www.egovos.
org/Conferences/March_2004_
Presentations>.

Notes 
1. In fact, the open source movement

traces its origins (through the free soft-
ware movement) to Richard Stallman’s
desire to enhance a proprietary printer
driver [8].

2. The author of this article is not a
lawyer. The information provided in
this article is for informational purpos-
es only and should not be construed as
legal advice.

About the Author

David Tuma is the lead
developer for the Soft-
ware Process Dashboard
Initiative, creating open
source tools to support
high-maturity software

development processes. He first encoun-
tered open source software as a student at
the Massachusetts Institute of Technolo-
gy, and again later as a captain in the
United States Air Force. As a strong sup-
porter of open source, Tuma has been
developing open source software on his
own time for the past 10 years.

Software Process Dashboard 
Initiative
1645 E. HWY 193, STE 102
Layton, UT 84040-8525
Phone: (801) 771-4100
Fax: (801) 728-0595
E-mail:tuma@users.sourceforge.net

Open Source
www.opensource.org
The Open Source Initiative (OSI) is a non-profit corporation
dedicated to managing and promoting the open source defini-
tion for the good of the community, specifically through the
OSI Certified Open Source Software certification mark and
program. You can read about successful software products and
about OSI’s certification mark and program on the Web site.

SourceForge.net
http://sourceforge.net
SourceForge.net is an open source software development Web
site maintaining one of the largest repositories of open source
code and applications available on the Internet. SourceForge.net
provides free services to open source developers.

GNU Operating System – Free Software
Foundation
www.gnu.org
The GNU [GNU’s Not Unix] Project was launched in 1984 to
develop a complete free software, Unix style operating system:
GNU (pronounced guh-noo). The Free Software Foundation is
the principal organizational sponsor of the GNU project.

National Technology Alliance
www.nta.org
The National Technology Alliance (NTA) is a U.S. government
program established in 1987 to influence commercial and dual-
use technology development with an emphasis on meeting
national security and defense technology needs. The NTA’s goal
is to partner commercial technology solutions to government
user technology needs and then create new or enhanced com-

mercial products where the cost of development is leveraged
across a broad user community.

Open Source Software Institute
http://oss-institute.org
The Open Source Software Institute is a non-profit organiza-
tion comprised of corporate, government, and academic repre-
sentatives whose mission is to promote the development and
implementation of open source software solutions within U.S.
federal and state government agencies and academic entities.

Samba
http://us4.samba.org
Samba is an open source/free software suite that provides seam-
less file and print services allowing for interoperability between
Linux/Unix servers and Windows-based servers. Samba is freely
available under the GNU General Public License. Samba is soft-
ware that can be run on a platform other than Microsoft
Windows such as Unix, Linux, IBM System 390, OpenVMS,
etc.

freshmeat
http://freshmeat.net
freshmeat maintains one of the Web’s largest index of Unix and
cross-platform software, themes and related eye-candy, and
Palm OS software. Thousands of applications and links to new
applications are added daily. Each entry provides a description
of the software, links to download it and obtain more informa-
tion, and a history of the project’s releases so readers can keep
up-to-date on the latest developments.

WEB SITES


